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Today’s objectives 

Review probability distributions/ensembles


Define negligible functions


Introduce indistinguishability


Formalize semi-honest security
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Real

OutputSim
Bob(x, y) = { y, m0, m1, ... }

Ideal

ViewΠ
Bob(x, y) = { y, m0, m1, ... }

These should “look the same”
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Simulator
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guess(x : {0,1}n): 
  return false

secret <--$ {0,1}n 

guess(x : {0,1}n): 
  return x = secret
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guess(x : {0,1}n): 
  return false

secret <--$ {0,1}n 

guess(x : {0,1}n): 
  return x = secret

uniformly sample
“Flip n coins at start-up”

There is a sense in which these two 
programs are the same
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guess(x : {0,1}n): 
  return false

secret <--$ {0,1}n 

guess(x : {0,1}n): 
  return x = secret

uniformly sample
“Flip n coins at start-up”

As n increases, the programs become 
harder and harder to tell apart
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guess(x : {0,1}n): 
  return 0

secret <--$ {0,1}n 

guess(x : {0,1}n): 
  return x = secret
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guess(x : {0,1}n): 
  return 0

secret <--$ {0,1}n 

guess(x : {0,1}n): 
  return x = secret
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guess(x : {0,1}n): 
  return 0

secret <--$ {0,1}n 

guess(x : {0,1}n): 
  return x = secret
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guess(x : {0,1}n): 
  return 0

secret <--$ {0,1}n 

guess(x : {0,1}n): 
  return x = secret
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secret <--$ {0,1}n 

guess(x : {0,1}n): 
  return x = secret

A (randomized) program can be viewed as the 
description of some distribution 

guess(x : {0,1}n): 
  return 0

Some programs that look very different can 
describe very similar distributions
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(Discrete) Probability Distribution

(Discrete) Uniform Distribution
A probability distribution where each 

outcome is equally likely.

The probability distribution associated with a random 
variable  is a function mapping input  to the 

probability that  takes value 
X x

X x
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Flip two 
fair coins

(Discrete) Probability Distribution
The probability distribution associated with a random 

variable  is a function mapping input  to the 
probability that  takes value 
X x

X x



Probability Ensemble

A Probability Ensemble is a family of random variables, 
indexed by a natural number

X = { Xn }n∈ℕ



A Probability Ensemble is a family of random variables, 
indexed by a natural number

X = { Xn }n∈ℕ

Hint: asymptotic behavior. How does this random variable 
change as we increase n?

Probability Ensemble
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A Probability Ensemble is a family of random variables, 
indexed by a natural number

Probability Ensemble

Number of heads as we increase the number of coin flips



ViewΠ
Bob(x, y) = { y, m0, m1, ... }
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These ensembles are hard to tell apart

OutputSim
Bob(x, y) = { y, m0, m1, ... }



ViewΠ
Bob(x, y) = { y, m0, m1, ... }

19

“No efficient algorithm can tell these two things apart”

OutputSim
Bob(x, y) = { y, m0, m1, ... }

Three notions of “hard to tell apart”

Identically distributed

Statistically close

Indistinguishable



ViewΠ
Bob(x, y) = { y, m0, m1, ... }
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“No efficient algorithm can tell these two things apart”

OutputSim
Bob(x, y) = { y, m0, m1, ... }

Three notions of “hard to tell apart”

Identically distributed

Statistically close

Indistinguishable

As we increase a parameter, the distributions quickly 
become close together.

As we increase a parameter, it quickly becomes 
difficult for programs to tell the distributions apart.



Negligible Function 

A function  is negligible if for any positive polynomial 
 there exists an  such that for all :

μ
p N n > N

μ(n) <
1

p(n)

“  approaches zero really fast”μ



Negligible Function 

A function  is negligible if for any positive polynomial 
 there exists an  such that for all :

μ
p N n > N

μ(n) <
1

p(n)

μ(n) =
1
2n

Canonical example:



Negligible Function 
A function  is negligible if for any positive polynomial 

 there exists an  such that for all :
μ

p N n > N

μ(n) <
1

p(n)
μ(n)



Negligible Function 
A function  is negligible if for any positive polynomial 

 there exists an  such that for all :
μ

p N n > N

μ(n) <
1

p(n)
μ(n)

1
p(n)



Negligible Function 
A function  is negligible if for any positive polynomial 

 there exists an  such that for all :
μ

p N n > N

μ(n) <
1

p(n)
μ(n)

1
p(n) N



Statistically Close

Statistical Distance

Δ(X, Y) =
1
2 ∑

α∈Domain

Pr[X = α] − Pr[Y = α]



Statistically Close

Statistical Distance

Δ(X, Y) =
1
2 ∑

α∈Domain

Pr[X = α] − Pr[Y = α]

Ensembles  and  are statistically close if the 
following is a negligible function:

{ Xn } { Yn }

f(n) = Δ(Xn, Yn)



Indistinguishability

Let  be ensembles. 
We say that  and  are computationally indistinguishable 
if for every (non-uniform) polynomial-time program , the 

following function is negligible:

X, Y
X Y

𝒟

δ(n) = ( Pr
x←Xn

[ 𝒟(x) = 1 ]) − ( Pr
y←Yn

[ 𝒟(y) = 1 ])



ViewΠ
Bob(x, y) = { y, m0, m1, ... }
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“No efficient algorithm can tell these two things apart”

OutputSim
Bob(x, y) = { y, m0, m1, ... }

Three notions of “hard to tell apart”

Identically distributed

Statistically close

Indistinguishable

As we increase a parameter, the distributions quickly 
become close together.

As we increase a parameter, it quickly becomes 
difficult for programs to tell the distributions apart.

X ≡ Y

X ≈ Y

X c= Y
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guess(x : {0,1}n): 
  return false

secret <--$ {0,1}n 

guess(x : {0,1}n): 
  return x = secret

uniformly sample
“Flip n coins at start-up”

In which sense are these two programs 
are the same?



Two-Party Semi-Honest Security

for deterministic functionalities 

Let  be a function. We say that a protocol  securely 
computes  in the presence of a semi-honest adversary if 

for each party  there exists a polynomial time 
simulator  such that for all inputs :

f Π
f

i ∈ {0,1}
𝒮i x0, x1

ViewΠ
i (x0, x1)

c= 𝒮i(xi, f(x0, x1))



x ⊕ y
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x ⊕ y
x y

x
y



x ⊕ y
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x ⊕ y
x y

x
y

ViewΠ
Bob(x, y) = {x, y}

SimΠ
Bob(x, x ⊕ y) = {x, (x ⊕ y) ⊕ y}



x ⊕ y
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x ⊕ y
x y

x
y

ViewΠ
Bob(x, y) = {x, y}

SimΠ
Bob(x, x ⊕ y) = {x, (x ⊕ y) ⊕ y}

≡



x ⊕ y
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x ⊕ y
x y

x
y

ViewΠ
Bob(x, y) = {x, y}

SimΠ
Bob(x, x ⊕ y) = {x, z ; z ←$ {0,1}}

Exercise: Is this a good simulator?



Lesson:

Inputs are not random. In general, we do not make 
assumptions about how inputs are distributed 

We should assume the adversary might have side 
information about the input.





Today’s objectives 

Review probability distributions/ensembles


Define negligible functions


Introduce indistinguishability


Formalize semi-honest security
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