Semi-Honest Security CS 598 DH

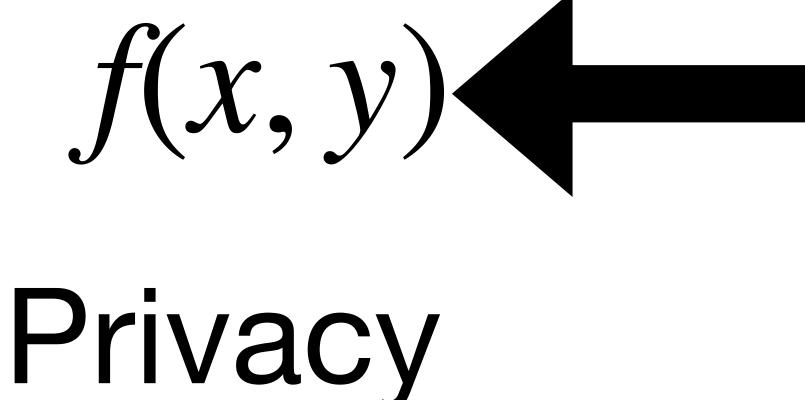
Today's objectives

Review probability distributions/ensembles

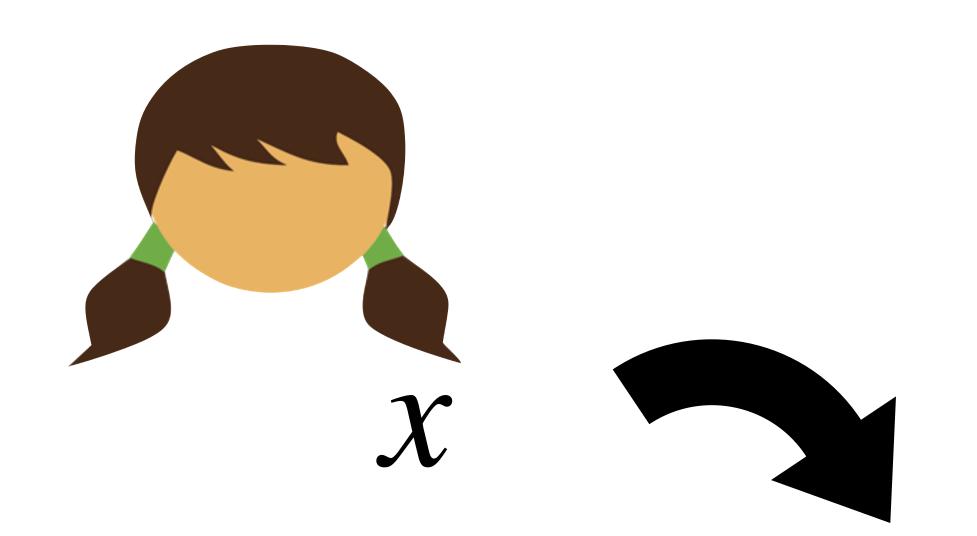
Define negligible functions

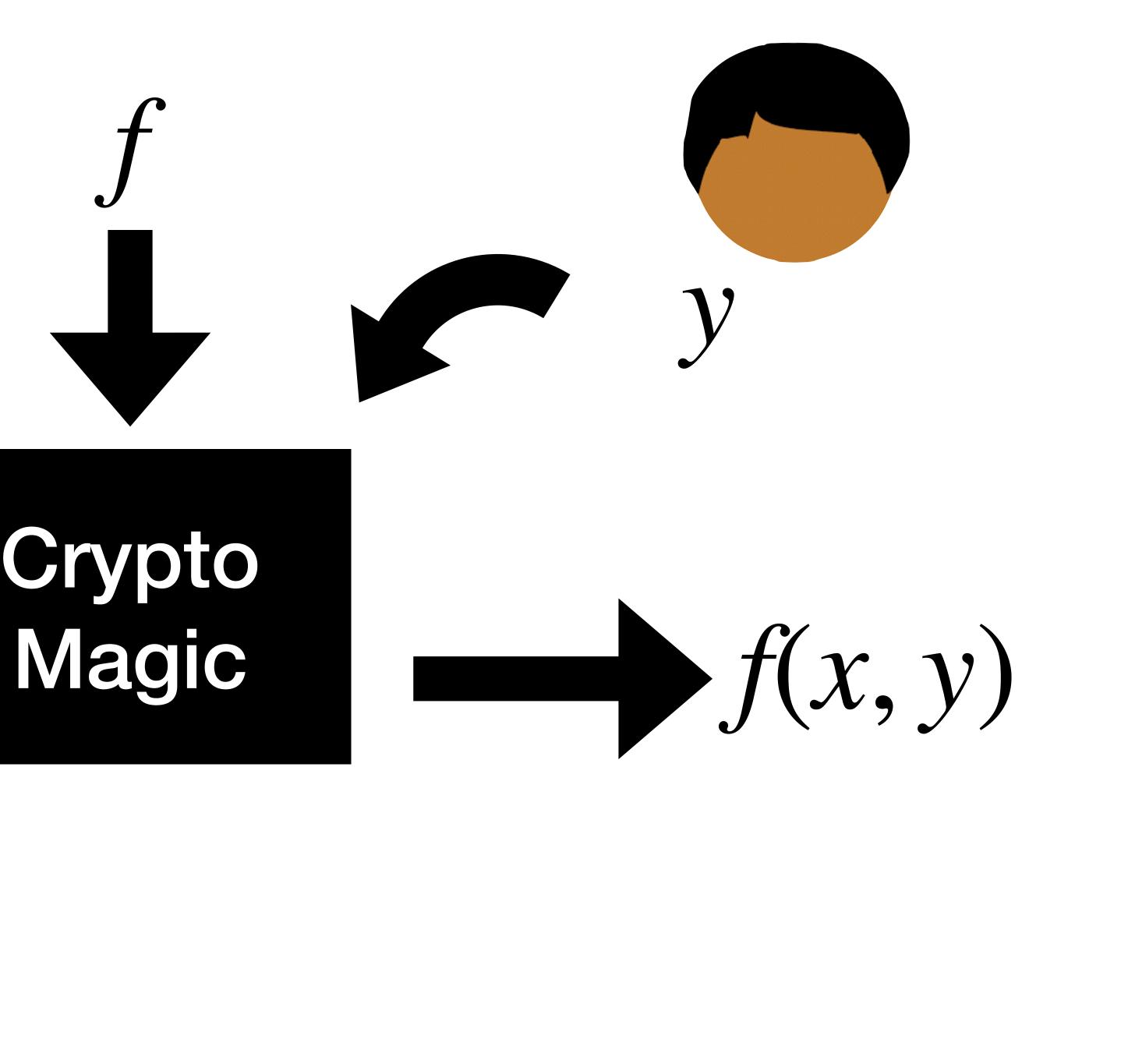
Introduce indistinguishability

Formalize semi-honest security

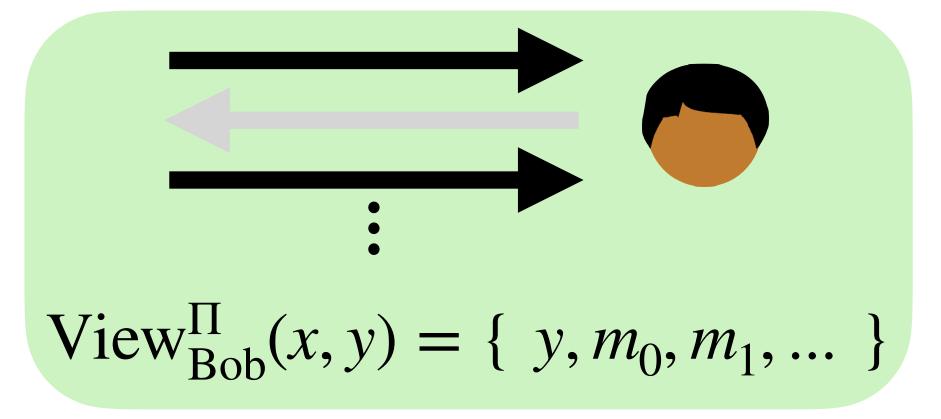


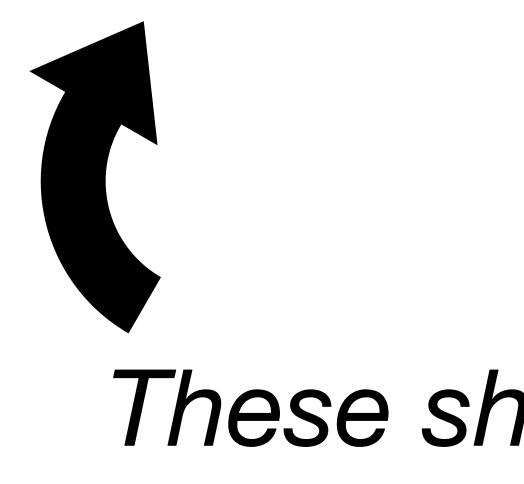
Authenticity

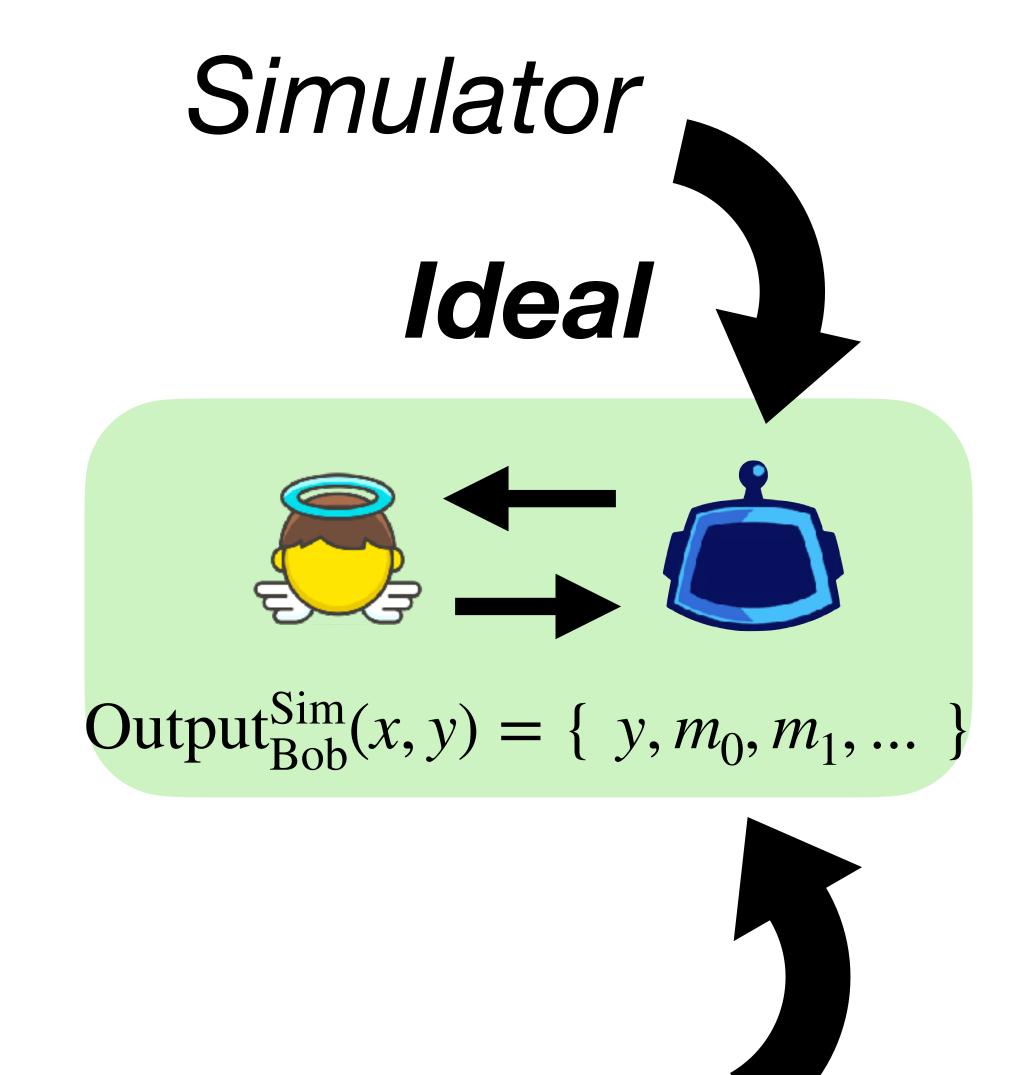




Real







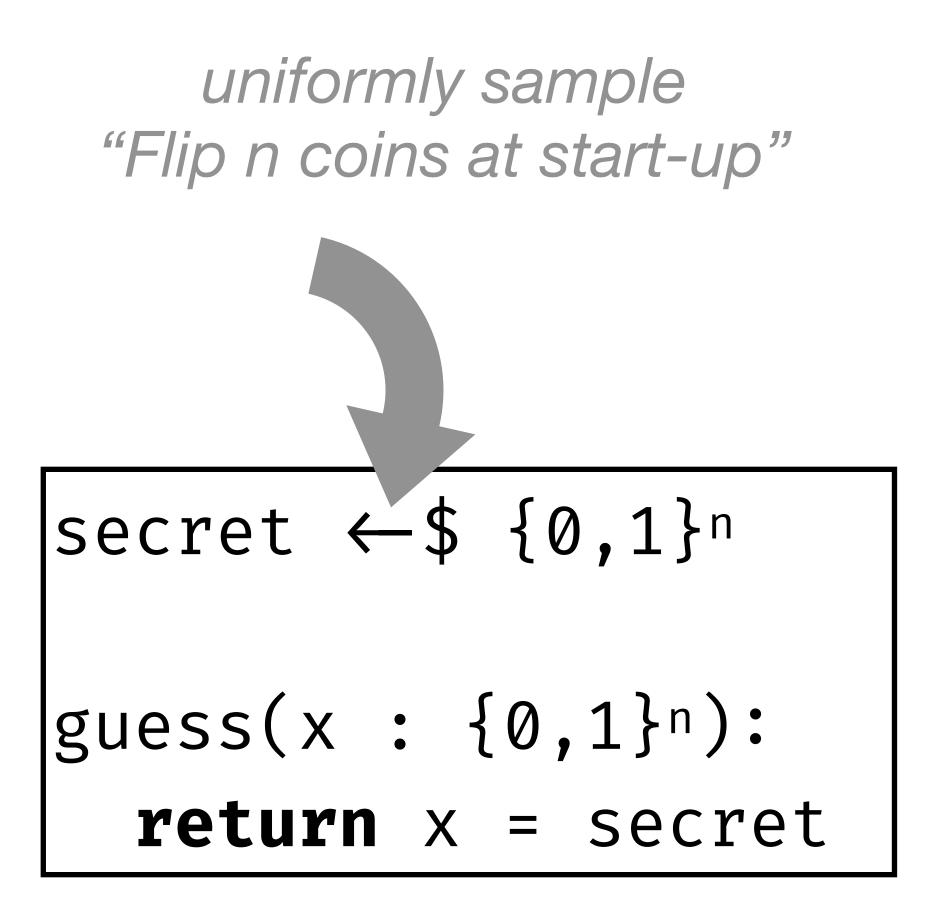
These should "look the same"

guess(x : {0,1}ⁿ): return false

secret ←\$ {0,1}ⁿ guess(x : {0,1}ⁿ): return x = secret

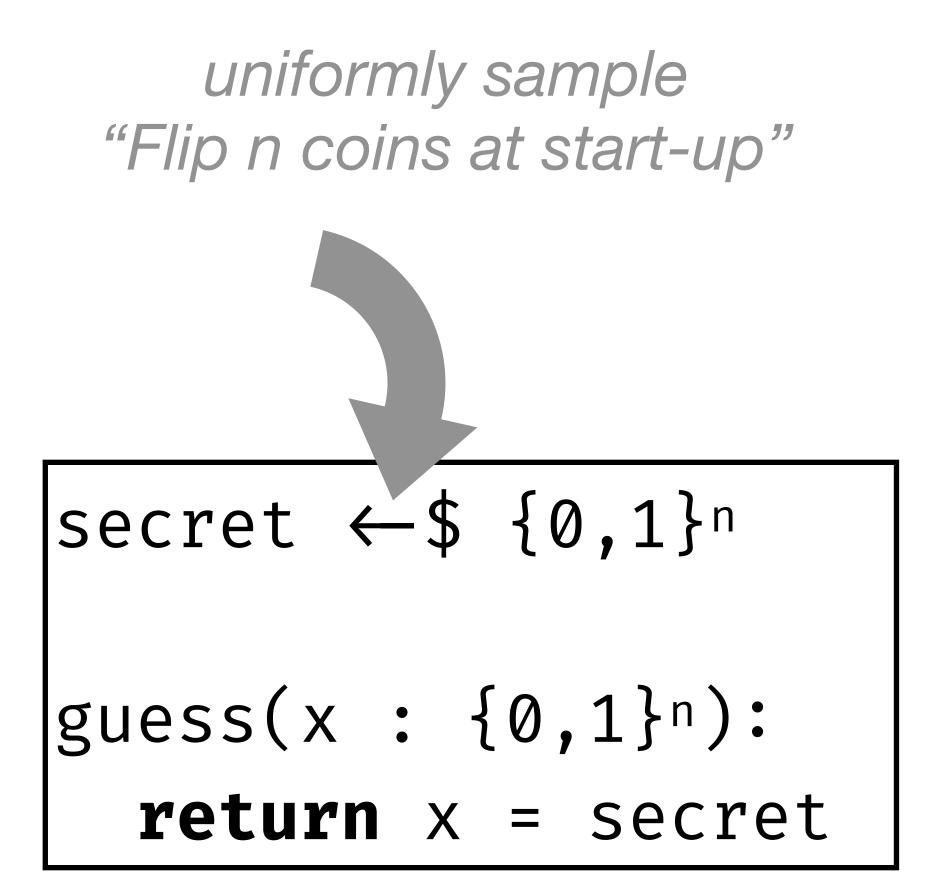
There is a sense in which these two programs are *the same*

guess(x : {0,1}ⁿ): return false



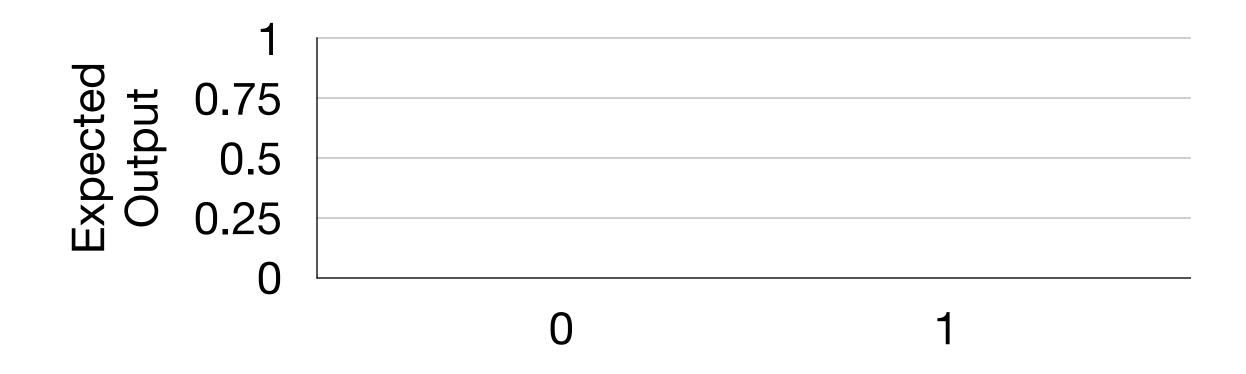
As n increases, the programs become harder and harder to tell apart

guess(x : {0,1}ⁿ): return false



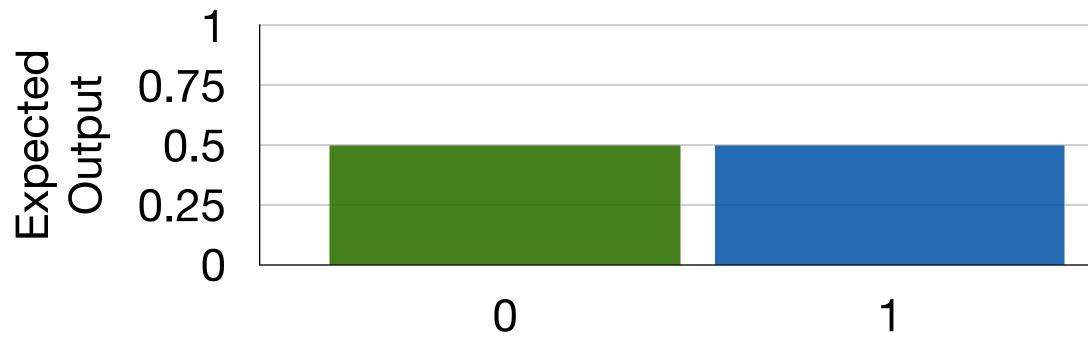
guess(x : {0,1}ⁿ): return 0

n = 1



Input

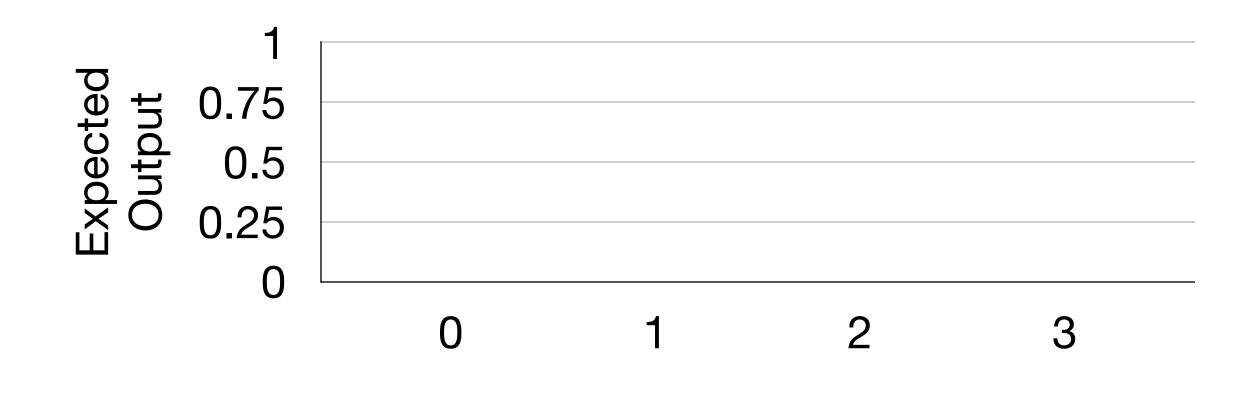
secret ←\$ {0,1}ⁿ
guess(x : {0,1}ⁿ):
 return x = secret



Input

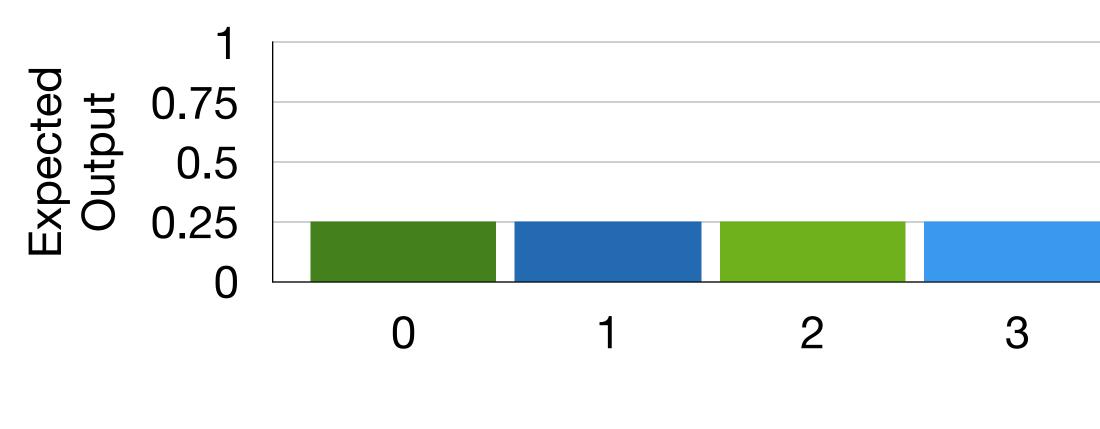
guess(x : {0,1}ⁿ): return 0

n = 2



Input

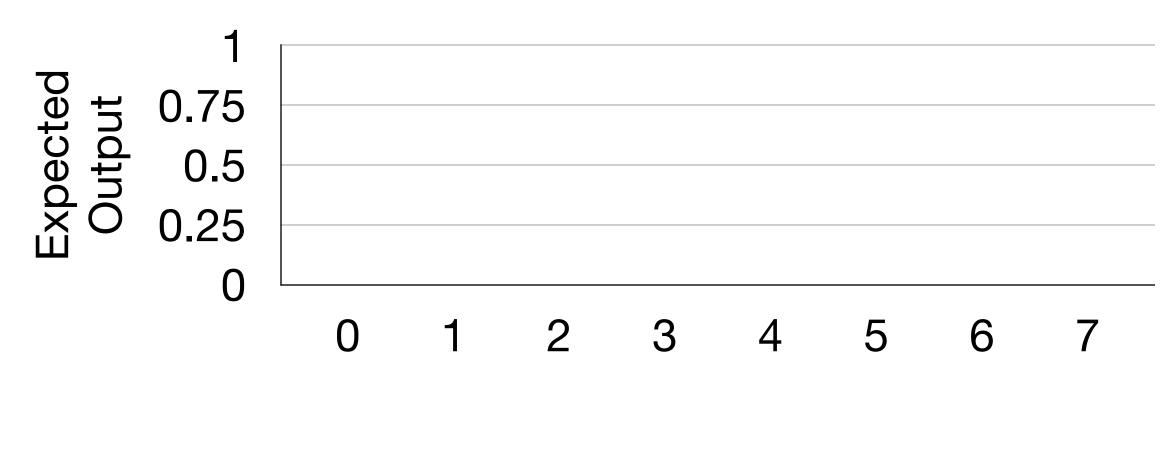
secret ←\$ {0,1}ⁿ
guess(x : {0,1}ⁿ):
 return x = secret



Input

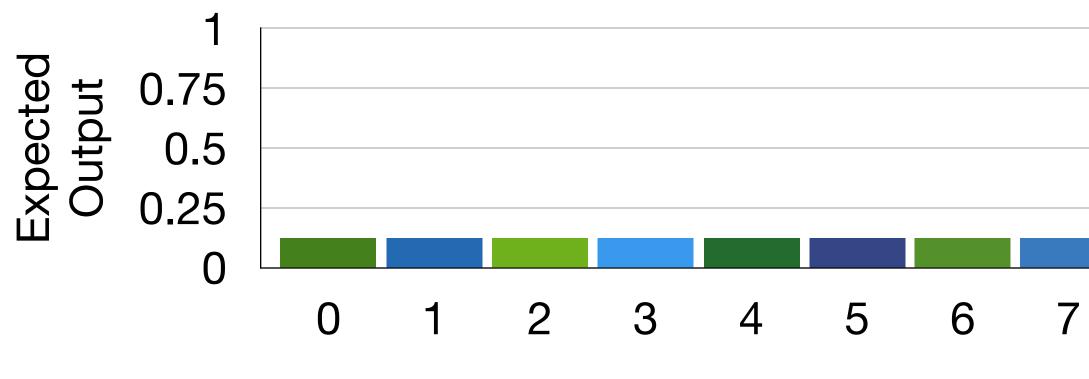
guess(x : {0,1}ⁿ): return 0

n = 3



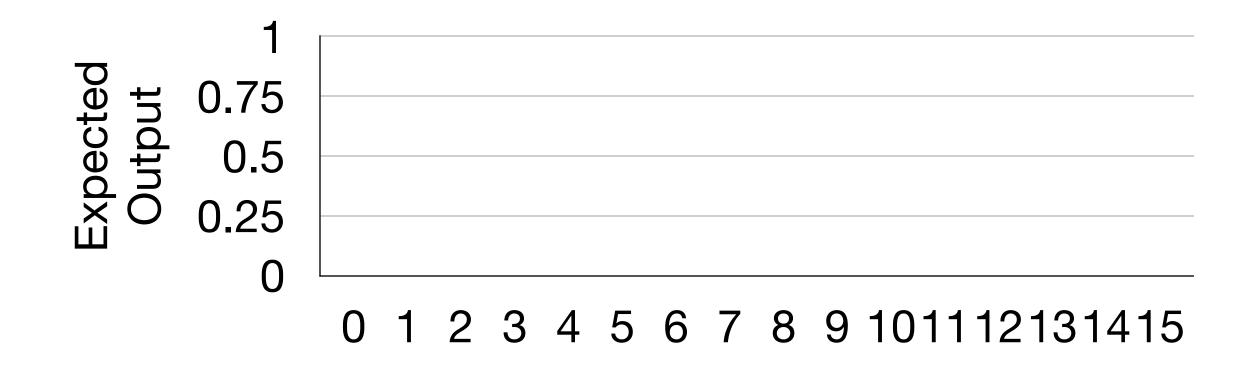
Input

secret ←\$ {0,1}ⁿ
guess(x : {0,1}ⁿ):
 return x = secret



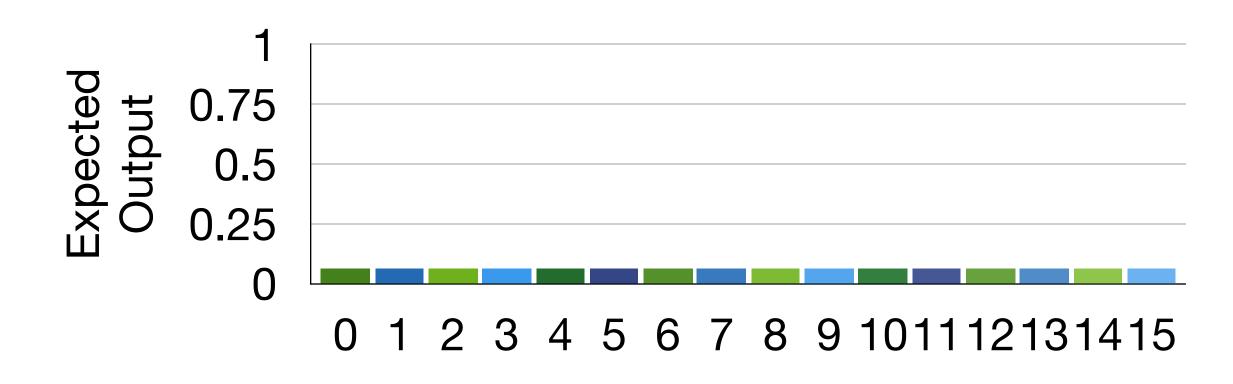
Input

n = 4



Input

secret ←\$ {0,1}ⁿ
guess(x : {0,1}ⁿ):
 return x = secret



Input

guess(x : {0,1}ⁿ):
 return 0

Some programs that look very different can describe very similar distributions

secret \leftarrow {0,1}ⁿ guess(x : {0,1}ⁿ): return x = secret

A (randomized) program can be viewed as the description of some distribution

(Discrete) Probability Distribution

The probability distribution associated with a random variable X is a function mapping input x to the probability that X takes value x

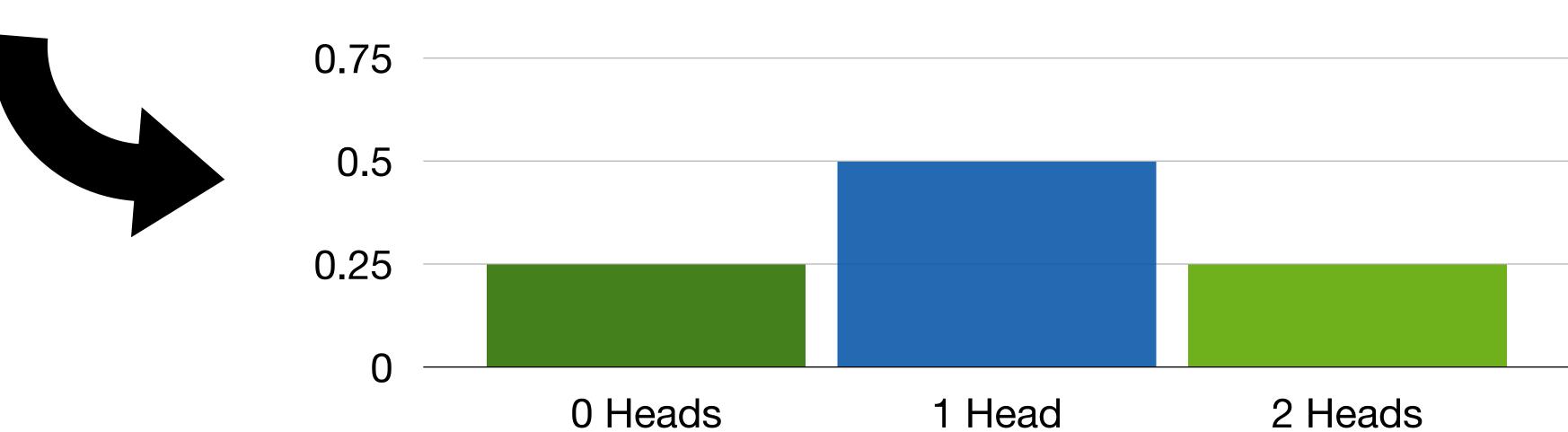
(Discrete) Uniform Distribution

A probability distribution where each outcome is equally likely.

(Discrete) Probability Distribution

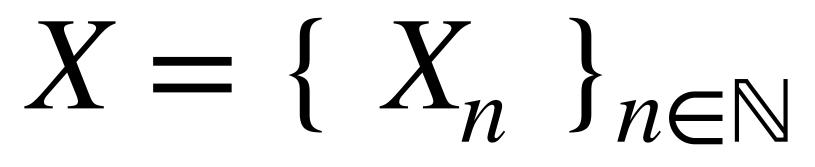
The probability distribution associated with a random variable X is a function mapping input x to the probability that X takes value x

Flip two fair coins



Probability Ensemble

A Probability Ensemble is a family of random variables, indexed by a natural number



Probability Ensemble

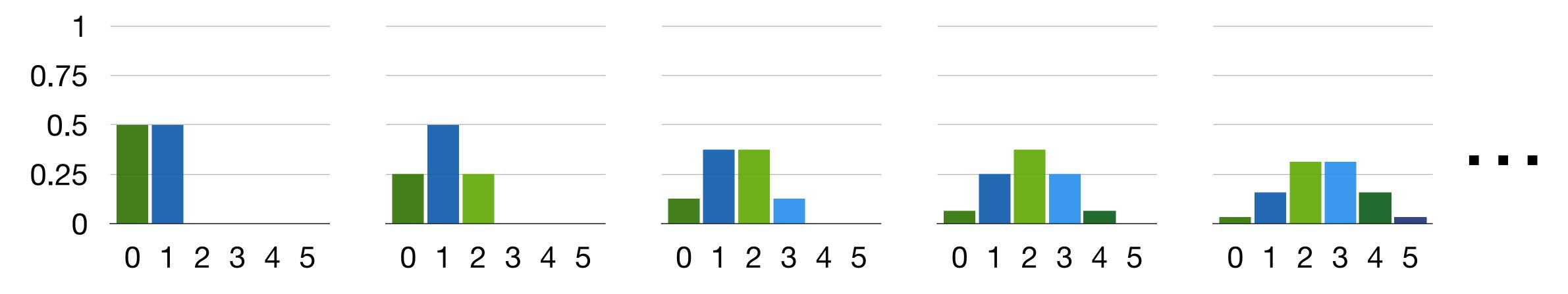
A Probability Ensemble is a family of random variables, indexed by a natural number

 $X = \{ X_n \}_{n \in \mathbb{N}}$

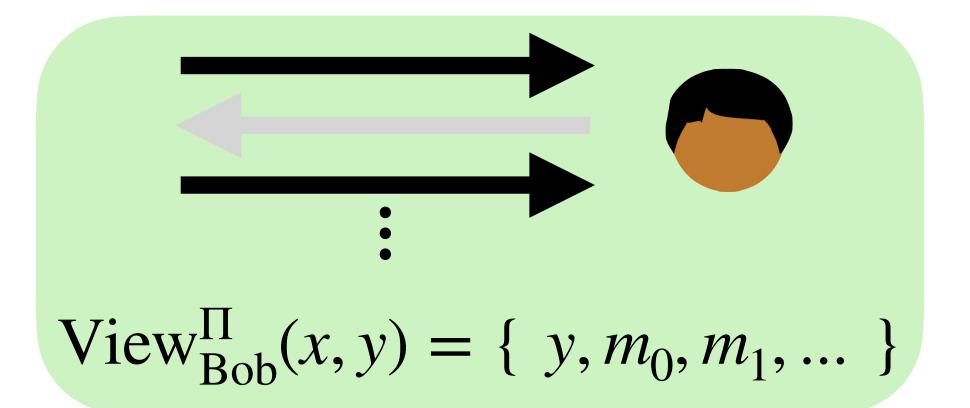
Hint: asymptotic behavior. How does this random variable change as we increase n?

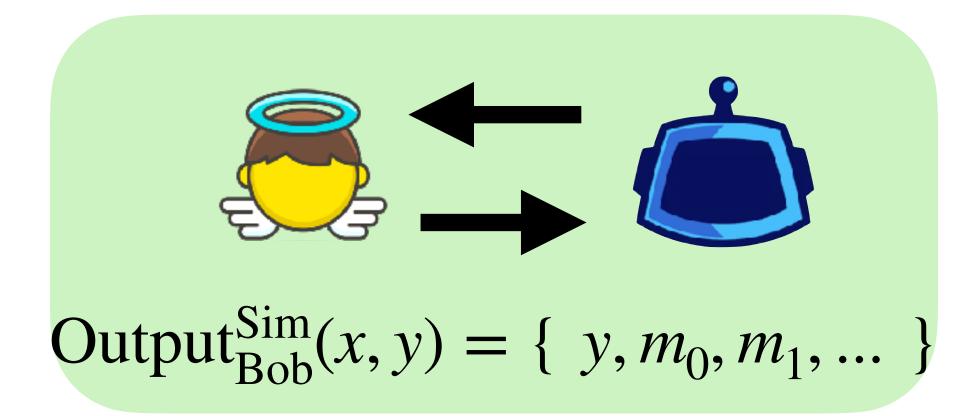
Probability Ensemble

A Probability Ensemble is a family of random variables, indexed by a natural number



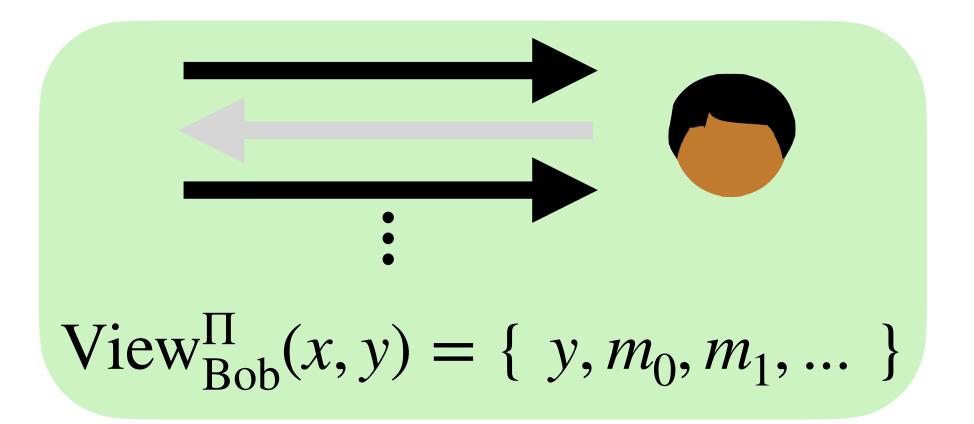
Number of heads as we increase the number of coin flips





These ensembles are hard to tell apart

"No efficient algorithm can tell these two things apart"



Three notions of "hard to tell apart"

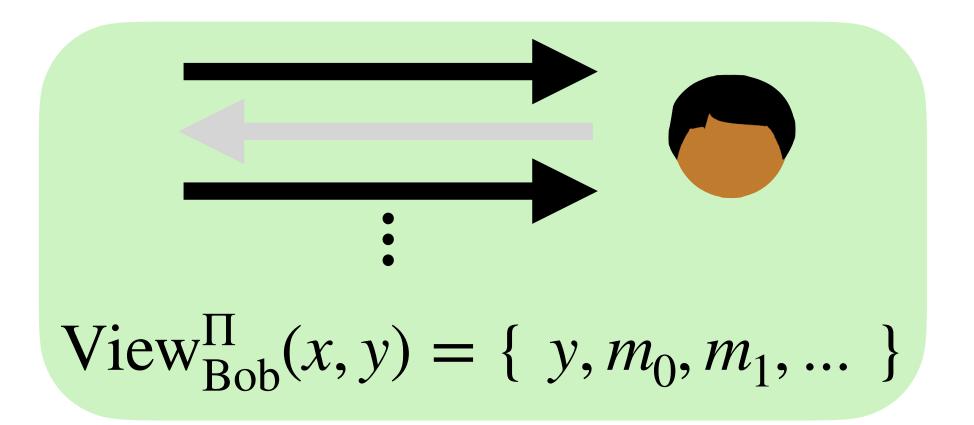
Identically distributed

Statistically close

Indistinguishable

Output^{Sim}_{Bob} $(x, y) = \{ y, m_0, m_1, ... \}$

"No efficient algorithm can tell these two things apart"



Three notions of "hard to tell apart"

Identically distributed

Statistically close

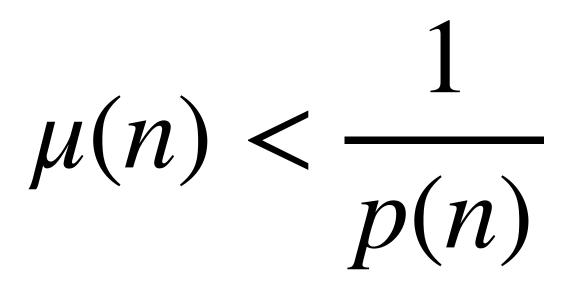
As we increase a parameter, the distributions quickly become close together.

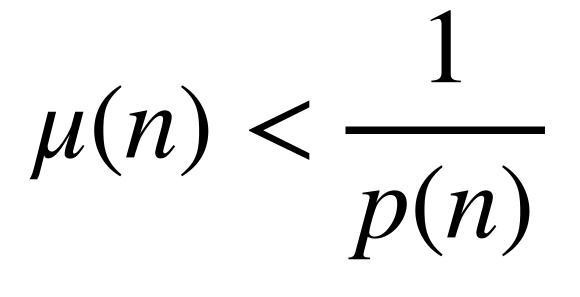
Indistinguishable

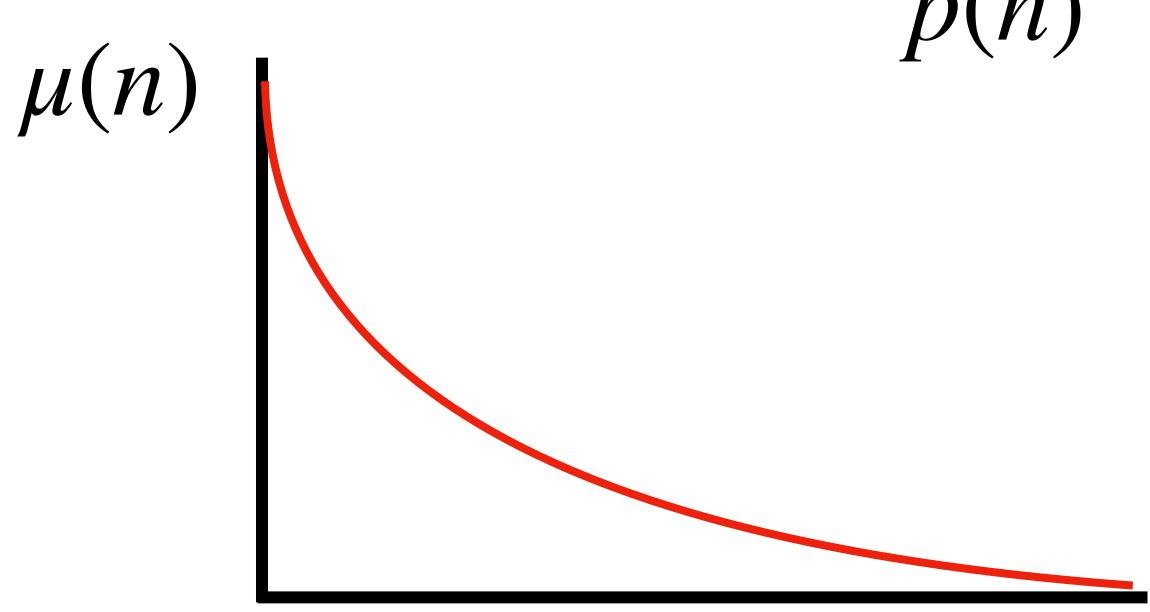
Output^{Sim}_{Bob} $(x, y) = \{ y, m_0, m_1, ... \}$

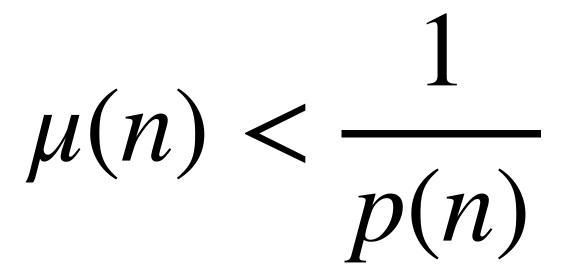
As we increase a parameter, it quickly becomes difficult for programs to tell the distributions apart.

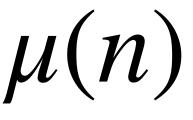
"µ approaches zero really fast"

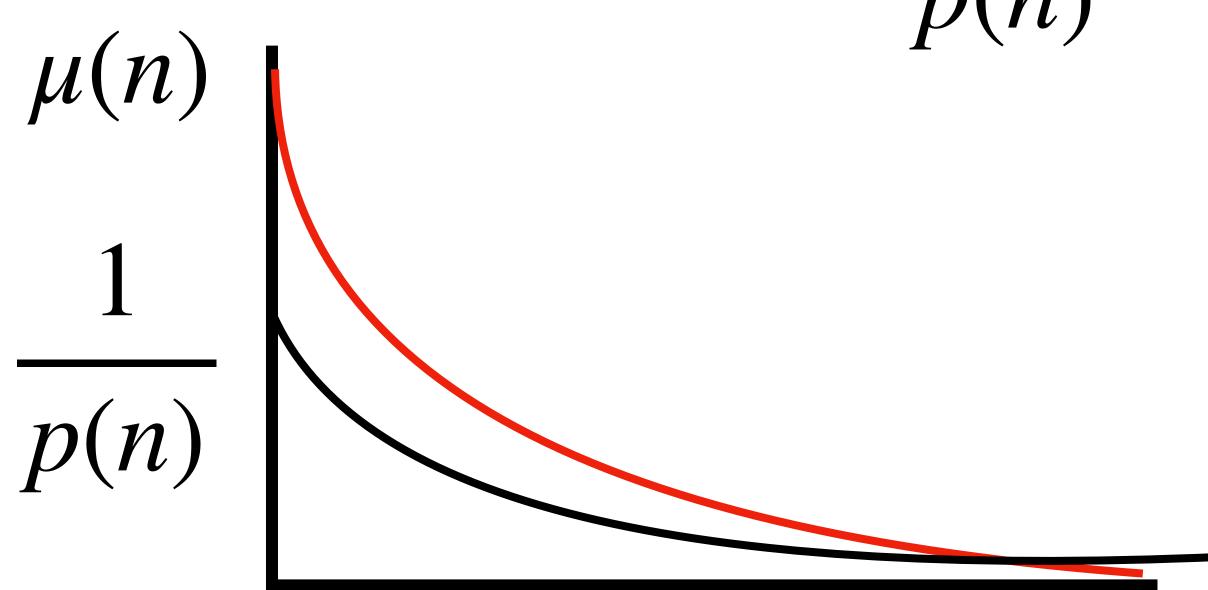


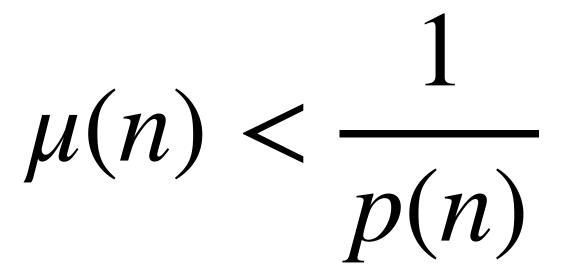


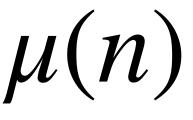


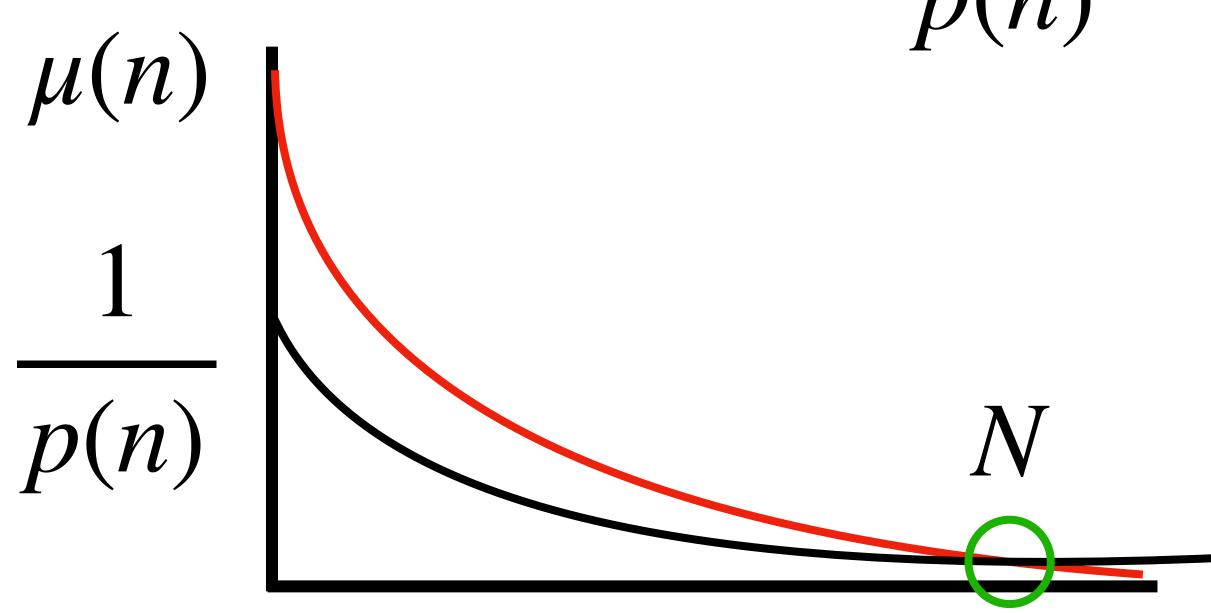


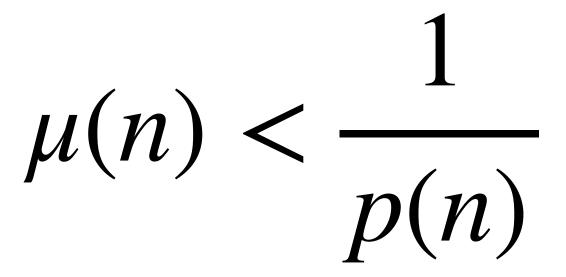












Statistically Close

Statistical Distance

$\Delta(X, Y) = \frac{1}{2} \sum_{\alpha \in \text{Domain}} \left| \Pr[X = \alpha] - \Pr[Y = \alpha] \right|$

Statistically Close

Statistical Distance

$\Delta(X, Y) = \frac{1}{2} \sum_{\alpha \in \text{Domain}} \left| \Pr[X = \alpha] - \Pr[Y = \alpha] \right|$

Ensembles { X_n } and { Y_n } are statistically close if the following is a negligible function:

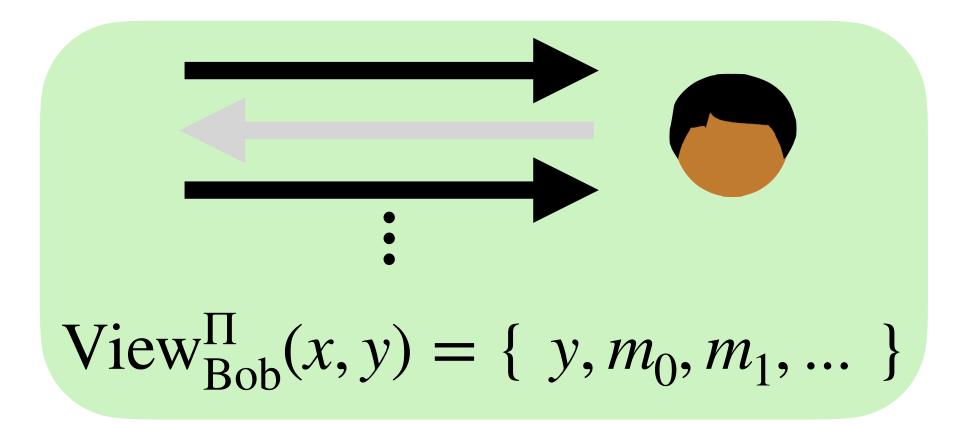
 $f(n) = \Delta(X_n, Y_n)$

Indistinguishability

Let *X*, *Y* be ensembles. We say that *X* and *Y* are computationally indistinguishable if for every (non-uniform) polynomial-time program \mathcal{D} , the following function is negligible:

$$\delta(n) = \left| \left(\Pr_{x \leftarrow X_n} \left[\mathscr{D}(x) = 1 \right] \right) - \left(\Pr_{y \leftarrow Y_n} \left[\mathscr{D}(y) = 1 \right] \right) \right|$$

"No efficient algorithm can tell these two things apart"



Three notions of "hard to tell apart"

- $X \equiv Y$ Identically distributed
- Statistically close $X \approx Y$
- $X \stackrel{c}{=} Y$ Indistinguishable

Output^{Sim}_{Bob} $(x, y) = \{ y, m_0, m_1, ... \}$

As we increase a parameter, the distributions quickly become close together.

As we increase a parameter, it quickly becomes difficult for programs to tell the distributions apart.

In which sense are these two programs are the same?

guess(x : {0,1}ⁿ):
 return false

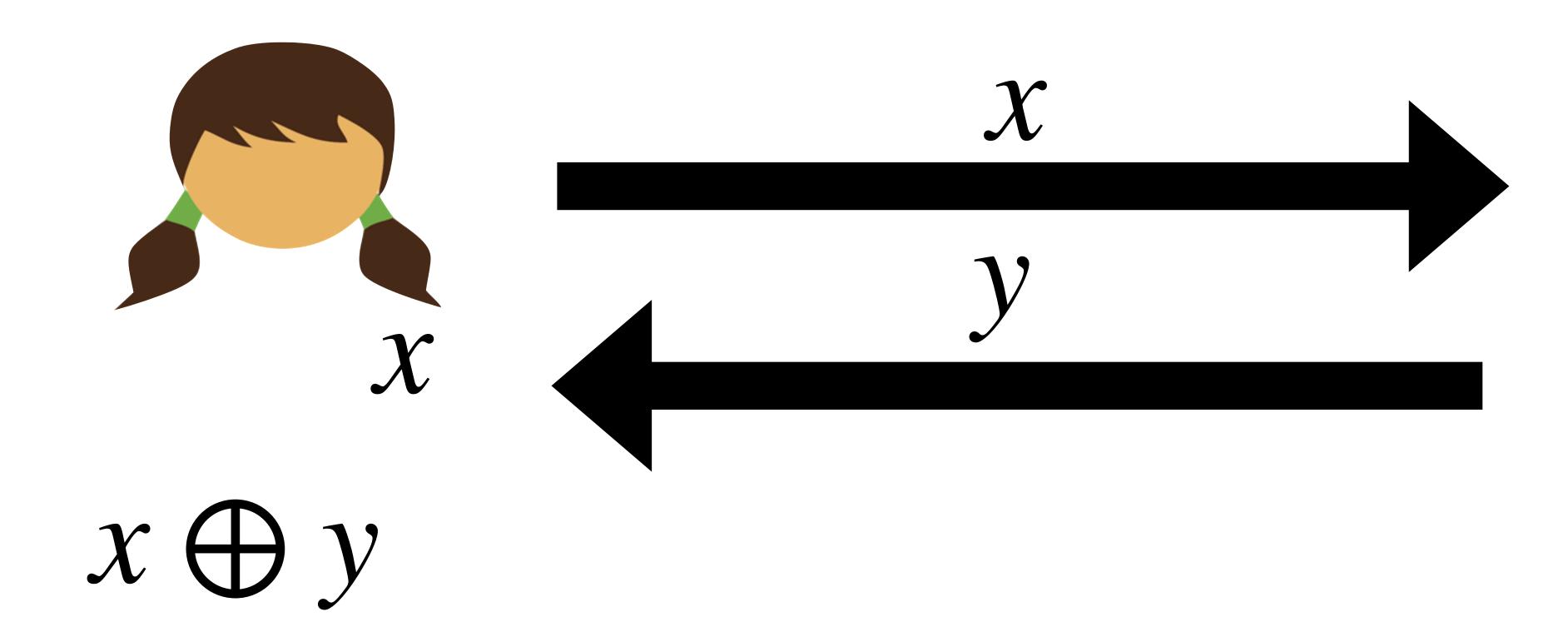
uniformly sample "Flip n coins at start-up"

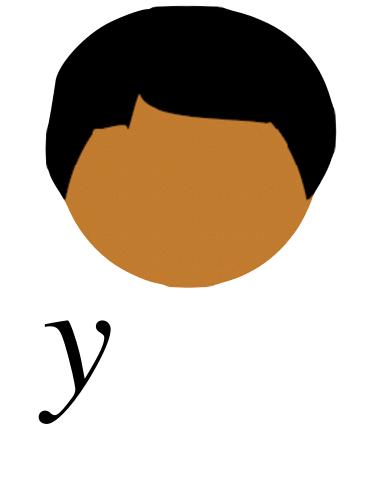
Two-Party Semi-Honest Security for deterministic functionalities

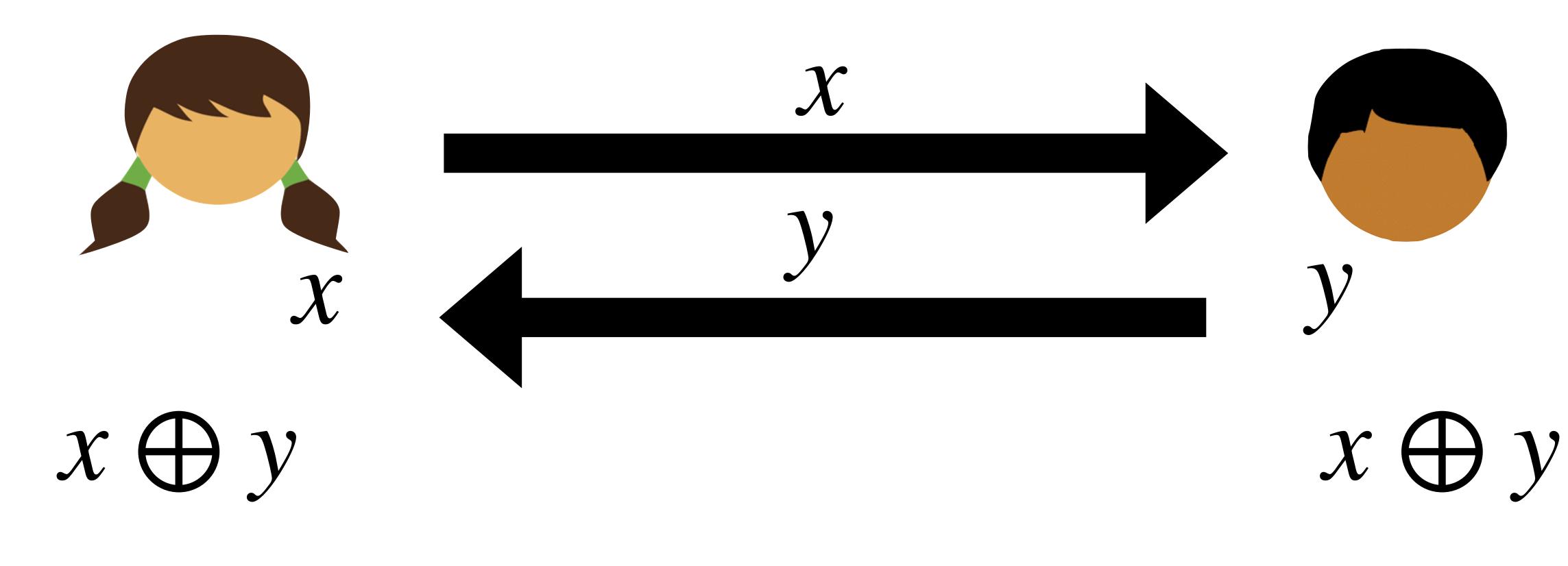
$$\operatorname{View}_{i}^{\Pi}(x_{0}, x_{1})$$

Let f be a function. We say that a protocol Π securely computes f in the presence of a semi-honest adversary if for each party $i \in \{0,1\}$ there exists a polynomial time simulator S_i such that for all inputs x_0, x_1 :

 $\stackrel{c}{=} S_{i}(x_{i}, f(x_{0}, x_{1}))$

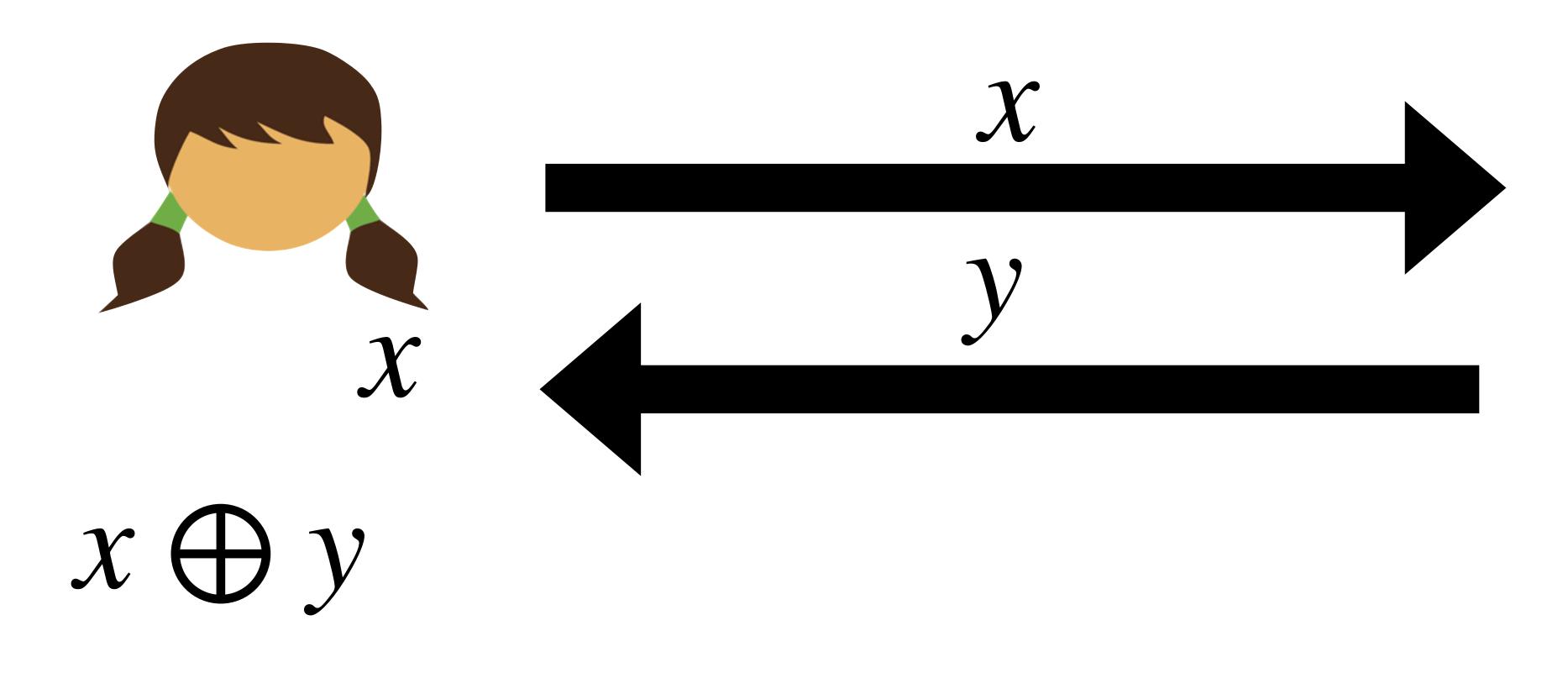


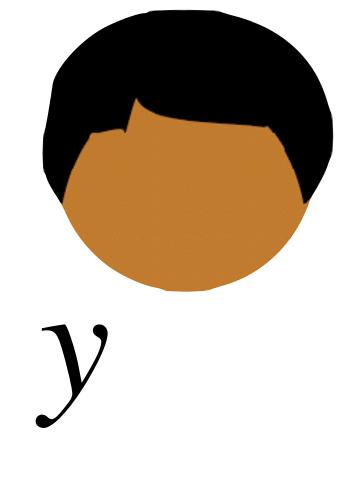




 $\text{View}_{\text{Bob}}^{\Pi}(x, y) = \{x, y\}$

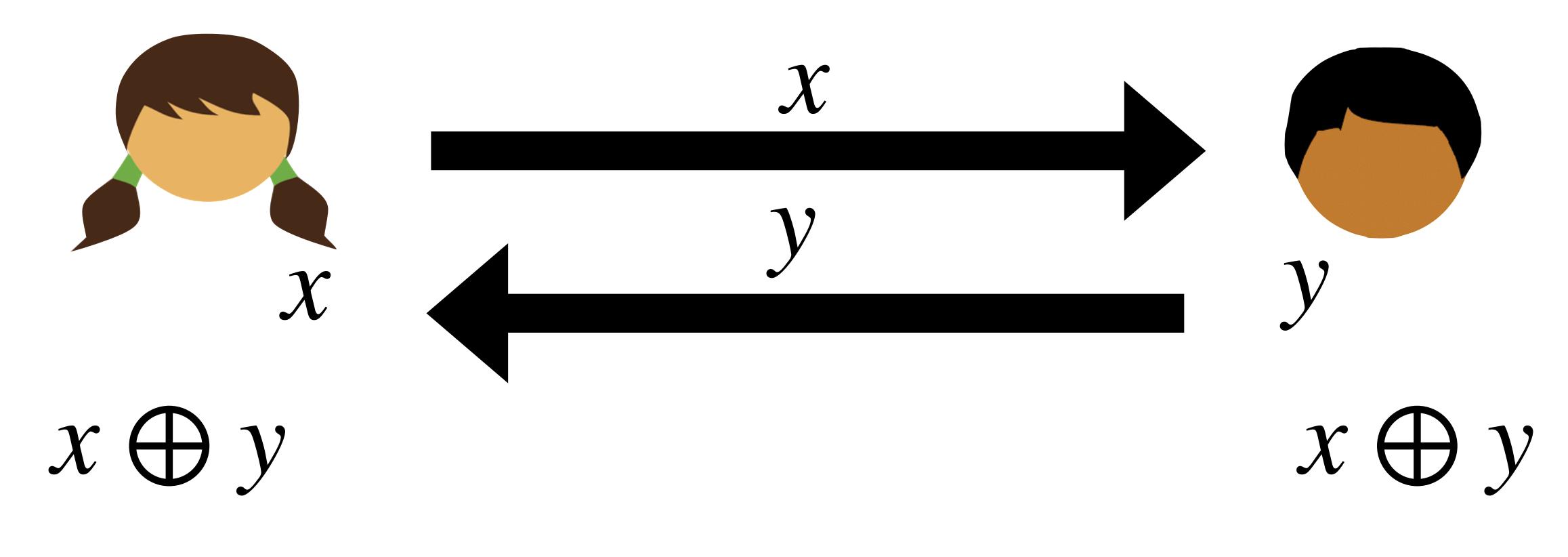
$\operatorname{Sim}_{\operatorname{Bob}}^{\operatorname{II}}(x, x \oplus y) = \{x, (x \oplus y) \oplus y\}$





 $x \oplus y$

$\text{View}_{\text{Bob}}^{\Pi}(x, y) = \{x, y\}$ $\operatorname{Sim}_{\operatorname{Bob}}^{\operatorname{II}}(x, x \oplus y) = \{x, (x \oplus y) \oplus y\}$



$\text{View}_{\text{Bob}}^{\Pi}(x, y) = \{x, y\}$

Exercise: Is this a good simulator?

 $\operatorname{Sim}_{\operatorname{Rob}}^{\Pi}(x, x \oplus y) = \{x, z ; z \leftarrow_{\$} \{0, 1\}\}$

Inputs are **not** random. In general, we do not make assumptions about how inputs are distributed

We should assume the adversary might have side information about the input.

Lesson:

How To Simulate It – A Tutorial on the Simulation **Proof Technique**^{*}

One of the most fundamental notions of cryptography is that of simulation. It stands behind the concepts of semantic security, zero knowledge, and security for multiparty computation. However, writing a simulator and proving security via the use of simulation is a non-trivial task, and one that many newcomers to the field often find difficult. In this tutorial, we provide a guide to how to write simulators and prove security via the simulation paradigm. Although we have tried to make this tutorial as stand-alone as possible, we assume some familiarity with the notions of secure encryption, zero-knowledge, and secure computation.

Keywords: secure computation, the simulation technique, tutorial

*This tutorial appeared in the book Tutorials on the Foundations of Cryptography, published in honor of Oded Goldreich's 60th birthday.

Yehuda Lindell

Dept. of Computer Science Bar-Ilan University, ISRAEL lindell@biu.ac.il

April 25, 2021

Abstract

Today's objectives

Review probability distributions/ensembles

Define negligible functions

Introduce indistinguishability

Formalize semi-honest security