Semi-Honest Security

CS 598 DH

Today's objectives

Review probability distributions/ensembles
Define negligible functions
Introduce indistinguishability
Formalize semi-honest security

Crypto Magic

Privacy
Authenticity


```
secret }\leftarrow${0,1}
guess(x : {0,1}n):
    return x = secret
```

$$
\begin{gathered}
\text { guess }(x:\{0,1\} n): \\
\text { return false }
\end{gathered}
$$

There is a sense in which these two programs are the same

$$
\begin{aligned}
& \text { guess }(x:\{0,1\} n): \\
& \text { return false }
\end{aligned}
$$

As n increases, the programs become harder and harder to tell apart

guess(x : \{0,1\}n):

 return 0$$
\mathrm{n}=1
$$

Input

```
secret }\leftarrow${0,1}
guess(x : {0,1}n):
    return x = secret
```


Input

guess(x : \{0,1\}n): return 0

$$
n=2
$$

Input

```
secret \leftarrow${0,1}n
guess(x : {0,1}n):
    return x = secret
```



```
guess(x : {0,1}n):
return 0
```

$$
\mathrm{n}=3
$$

Input

```
secret }\leftarrow${0,1}
guess(x : {0,1}n):
    return x = secret
```



```
guess(x : {0,1}n):
return 0
```

```
secret }\leftarrow${0,1}
guess(x : {0,1}n):
    return x = secret
```

$$
n=4
$$

Input

$$
\text { guess(x : } \left.\{0,1\}^{n}\right):
$$ return 0

```
secret }\leftarrow${0,1}
guess(x : {0,1}n):
return x = secret
```

A (randomized) program can be viewed as the description of some distribution

Some programs that look very different can describe very similar distributions

(Discrete) Probability Distribution

The probability distribution associated with a random variable X is a function mapping input x to the probability that X takes value x

(Discrete) Uniform Distribution

A probability distribution where each outcome is equally likely.

(Discrete) Probability Distribution

The probability distribution associated with a random variable X is a function mapping input x to the probability that X takes value x

Probability Ensemble

A Probability Ensemble is a family of random variables, indexed by a natural number

$$
X=\left\{X_{n}\right\}_{n \in \mathbb{N}}
$$

Probability Ensemble

A Probability Ensemble is a family of random variables, indexed by a natural number

$$
X=\left\{X_{n}\right\}_{n \in \mathbb{N}}
$$

Hint: asymptotic behavior. How does this random variable change as we increase n ?

Probability Ensemble

A Probability Ensemble is a family of random variables, indexed by a natural number

Number of heads as we increase the number of coin flips

These ensembles are hard to tell apart
"No efficient algorithm can tell these two things apart"

Three notions of "hard to tell apart"
Identically distributed
Statistically close
Indistinguishable

"No efficient algorithm can tell these two things apart"

Three notions of "hard to tell apart"
Identically distributed
Statistically close As we increase a parameter, the distributions quickly become close together.

Indistinguishable As we increase a parameter, it quickly becomes difficult for programs to tell the distributions apart.

Negligible Function

A function μ is negligible if for any positive polynomial p there exists an N such that for all $n>N$:

$$
\mu(n)<\frac{1}{p(n)}
$$

" μ approaches zero really fast"

Negligible Function

A function μ is negligible if for any positive polynomial p there exists an N such that for all $n>N$:

$$
\mu(n)<\frac{1}{p(n)}
$$

Canonical example: $\quad \mu(n)=\frac{1}{2^{n}}$

Negligible Function

A function μ is negligible if for any positive polynomial p there exists an N such that for all $n>N$:

$$
\mu(n)<\frac{1}{p(n)}
$$

Negligible Function

A function μ is negligible if for any positive polynomial p there exists an N such that for all $n>N$:

Negligible Function

A function μ is negligible if for any positive polynomial p there exists an N such that for all $n>N$:

Statistically Close

Statistical Distance

$$
\Delta(X, Y)=\frac{1}{2} \sum_{\alpha \in \text { Domain }}|\operatorname{Pr}[X=\alpha]-\operatorname{Pr}[Y=\alpha]|
$$

Statistically Close

Statistical Distance

$$
\Delta(X, Y)=\frac{1}{2} \sum_{\alpha \in \text { Domain }}|\operatorname{Pr}[X=\alpha]-\operatorname{Pr}[Y=\alpha]|
$$

Ensembles $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ are statistically close if the following is a negligible function:

$$
f(n)=\Delta\left(X_{n}, Y_{n}\right)
$$

Indistinguishability

Let X, Y be ensembles.
We say that X and Y are computationally indistinguishable if for every (non-uniform) polynomial-time program \mathscr{D}, the following function is negligible:

$$
\delta(n)=\left|\left(\underset{x \leftarrow X_{n}}{\operatorname{Pr}}[\mathscr{D}(x)=1]\right)-\left(\operatorname{Pr}_{y \leftarrow Y_{n}}[\mathscr{D}(y)=1]\right)\right|
$$

"No efficient algorithm can tell these two things apart"

Three notions of "hard to tell apart"
$X \equiv Y \quad$ Identically distributed
$X \approx Y \quad$ Statistically close
As we increase a parameter, the distributions quickly become close together.
$X \stackrel{c}{=} Y \quad$ Indistinguishable As we increase a parameter, it quickly becomes difficult for programs to tell the distributions apart.
uniformly sample
"Flip n coins at start-up"

$$
\begin{aligned}
& \text { guess }\left(x:\{0,1\}^{n}\right): \\
& \text { return false }
\end{aligned}
$$

```
secret }\leftarrow${0,1}
guess(x : {0,1}n):
    return x = secret
```


In which sense are these two programs are the same?

Two-Party Semi-Honest Security for deterministic functionalities

Let f be a function. We say that a protocol Π securely computes f in the presence of a semi-honest adversary if for each party $i \in\{0,1\}$ there exists a polynomial time simulator \mathcal{S}_{i} such that for all inputs x_{0}, x_{1} :
$\operatorname{View}_{i}^{\Pi}\left(x_{0}, x_{1}\right) \stackrel{c}{=} \delta_{i}\left(x_{i}, f\left(x_{0}, x_{1}\right)\right)$

$x \oplus y$
$x \oplus y$
$\operatorname{View}_{\text {Bob }}^{\Pi}(x, y)=\{x, y\}$

$$
\operatorname{Sim}_{\mathrm{Bob}}^{\Pi}(x, x \oplus y)=\left\{x, z ; z \leftarrow_{\$}\{0,1\}\right\}
$$

Exercise: Is this a good simulator?

Lesson:

Inputs are not random. In general, we do not make assumptions about how inputs are distributed

We should assume the adversary might have side information about the input.

How To Simulate It - A Tutorial on the Simulation

Proof Technique ${ }^{*}$

Yetuda Lindell
Dept. of Computer Science Bar-Ilan University, IsRabl lindellobiu.ac.il

April 25; 2021

Abstract
One of the most fundamental notions of cryptography is that of simulation. It stands behind One of the moost fundamental notions of cryptography is that of smulatitor. It stands behind Howevcr, writing a simulator and proving security via the usc of simulation is ε non-trivial task,
and one that mary newcomers to the field orter find difficult In this tutorial, we provide a
 guide to how to write simulatoros and prove security via the simulation paradigm. Although we
have tried to make this tutorial as stard-alone as possible, we assume some familiarity with the notions of secire encrypliun, zero-knowledge, and secure compulation.

[^0]
Today's objectives

Review probability distributions/ensembles
Define negligible functions
Introduce indistinguishability
Formalize semi-honest security

[^0]: Keywords: secure computation, the simulation technique, tutorial
 'This tutorial appeared in the book Tutoriais on the Foundations of Cryptography, publisized in honor of Oded
 Golcreech's foth hlrthday.

